A Single-Phase Embedded Z-Source DC-AC Inverter

نویسندگان

  • Se-Jin Kim
  • Young-Cheol Lim
چکیده

In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Implementation of T-Z Source Inverter System

In this paper, a new family of single-stage high step-up boost voltage inverter based on transformer is proposed, called T-Z source inverters. By replacing two inductors in the classical Z-source inverter with two transformer, the proposed inverter produces a very high boost voltage gain when, the turn ratio of the transformer is larger than one. Compared to the trans-Z source inverter, the pro...

متن کامل

Z–Source Multilevel Inverter Based On Embedded Controller

In this paper Embedded based Z-source multilevel inverter (ZSMLI) is proposed. This work implements a five level cascaded H-bridge Z-source inverter by using embedded control. Switching devices are triggered using embedded controller. In this controller coding is described by using switching table. The presence of Z-source network couples inverter main circuit to the power source that providing...

متن کامل

Dual Z-Source Network Dual-Input Dual-Output Inverter

This paper presents a modified nine switch inverter with two inputs and two Z-source networks. This inverter has two DC inputs and two AC outputs. Input DC voltages can be boosted to the required level. Amplitude, frequency and phase of AC output voltages can be controlled, independently. The proposed converter can be used in applications with two unregulated DC sources, which require feeding ...

متن کامل

Controlling Both the DC Boost and AC Output Voltage of Z-Source Inverter Using Neural Network Controller with Minimization of Voltage Stress Across Devices

This paper presents a method to control both the dc boost and the ac output voltage of Z-source inverter using neural network controllers. The capacitor voltage of Z-source network has been controlled linearly in order to improve the transient response of the dc boost control of the Z-source inverter. The peak value of the line to line ac output voltage is used to control and keep the ac output...

متن کامل

Control of Z-Source Inverter Connected to a Single-Phase AC Utility System

This paper presents a single-phase Z-source inverter as a power conditioning system for a single phase utility connected system. Z-source inverter is a single-stage topology that has buck-boost feature, which is possible because of additional shoot through state introduced in zero state of the conventional inverter pulse width modulation and provides desired output AC voltage. Small distributed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014